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Abstract. In this paper, we investigate the robustness of Feed Forward
Neural Network (FFNN) ensemble models applied to quarterly time
series forecasting tasks, by comparing their prediction ability with that
of Seasonal Auto-regressive Integrated Moving Average (SARIMA) mod-
els. We obtained adequate SARIMA models which required statistical
knowledge and considerable effort. On the other hand, FFNN ensemble
models were readily constructed from a single FFNN template, and they
produced competitive forecasts, at the level of well-constructed SARIMA
models. The single template approach for adapting FFNN ensembles to
multiple time series datasets can be an economic and sensible alternative
if fitting individual models for each time series turns out to be very time
consuming. Additionally, FFNN ensembles were able to produce accurate
interval estimations, in addition to good point forecasts.

Keywords: time series forecasts, SARIMA models, artificial neural net-
works, model ensemble, particle swarm optimization, ensemble channel.

1 Introduction

A central objective pursued by people working in diverse scientific and engineer-
ing fields is to predict, as accurately as possible, short-term future behavior from
relatively well-understood, but out of control time-evolving variables, like birth
rates in a municipality, employment rates in a national economy, enrollments
at a certain school, influenza cases detected in a community, blood pressure
measured from an individual, rainfall at a specific geographic region, etc. Rea-
sonable short-term predictions for variables such as these enable people to make
informed decisions; for instance, good 24-hour-ahead predictions for electrical
energy consumption are of fundamental importance when deciding about the
actions to take in order to guarantee the optimal management and operation of
an energy grid supplying electricity to clients.

A time series is a sequence of chronologically ordered values, sampled from a
time-evolving variable; this conceptual tool plays a central role in the scientific
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search for good short-term predictions (also called forecasts). Typically, time se-
ries values are measured from a real-world process, or variable, at equally-spaced
points in time. In order to predict future time series values, mathematical models
are typically employed; these models extract information about the characteristic
behavior of consecutive past time series values (historical data), and then use
this extracted information to project (extrapolate) time series behavior into the
near future.

We can identify two broad classes of mathematical methodologies for building
time series models: traditional methods based on parametric statistical mod-
eling, and newer techniques based on nonparametric modeling. One potential
limitation of parametric models is that they make strong assumptions about
the true nature of the time series generating mechanism (e.g., temporal data
are generated by a linear, time-invariant process). This limitation, coupled with
the advent of powerful and cheap computing devices, motivated researchers to
consider more flexible modeling strategies: enter the nonparametric approach,
which includes support vector regression models [5]; artificial neural network
(ANN) models [10], [11]; and wavelet methods [6].

Although ANNs are often employed for supervised classification and pattern
recognition tasks, it was soon realized that ANNs are also a good alternative
to regression problems, and more specifically, to time series forecasting tasks.
Lapedes reports the first attempt to model nonlinear time series with artificial
neural networks [9]. ANNs achieve universal functional approximation; it has
been shown that an artificial neural network can approximate any continuous
function (linear or nonlinear) to any desired accuracy [4]. Time series modeling,
in particular, is a function approximation problem, so ANNs seem to be a natural
alternative to this kind of problem. Feed Forward Neural Network (FFNN)
models belong to a particular class of ANNs; they combine sigmodal activation
functions in order to achieve nonlinear mappings.

In this paper, we’ll investigate the robustness of FFNN ensembles applied to
quarterly time series forecasting tasks, by comparing their prediction ability with
that of SARIMA models (SARIMA is a class of ARIMA model which considers
seasonal fluctuations present in temporal data). The rest of this document is
organized as follows: Sect. 2 describes briefly the main theoretical concepts
used in this experiment to construct our models: Time Series modeling basics,
ARIMA models, FFNNs, and the basic PSO algorithm; Sect. 3 describes the
experimental methodology; Sect. 4 describes the results of our experiment, and
Sect. 5 summarizes our findings and conclusions.

2 Conceptual Tools

2.1 Time Series Modeling: the Problem of Predicting the Future

Extending backwards from time t, we have a time series {yt, yt−1, yt−2, . . .}.
Employing this information, we now want to estimate y at some future time
t + s (s is called the prediction horizon; typically, s = 1). We can accomplish
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this task if we assume a model in which yt+s is generated from a functional
relationship f involving past y values yt, yt−1, yt−2, . . . , yt−d+1; i.e.,

yt+s = f(yt, yt−1, yt−2, . . . , yt−d+1). (1)

This is a function approximation problem. To solve it, we’ll typically go
through the following steps: 1. Assume a generative model f ; 2. For every time
point tp in the past, train f using ytp , ytp−1, ytp−2, . . ., ytp−d+1 as inputs

and ytp+s as the target (this step is called training phase); 3. Now run the
trained generative model f to predict yt+s from yt, yt−1, yt−2, . . . , yt−d+1. This
procedure, characterized by functional relationship (1), is called auto-regressive
approach to time series modeling. The objective of the training phase is to adjust
the behavior (parameters) of f until all of its predictions ŷtp+s get sufficiently
close to corresponding target values ytp+s. A properly trained generative model
f will produce forecasts ŷt+s reasonably close to future time series values yt+s;
we say in this case that the model f generalizes well to unknown future time
series values.

2.2 ARIMA Time Series Modeling

Perhaps the most popular and traditional of all statistical methods for time series
forecasting is auto-regressive integrated moving average (ARIMA) modeling.
The general ARMA model (without the I) was described in [19], and it was
popularized in the 1970 book by [3]; it has the form

yt =

p∑
i=1

φiyt−i +

q∑
j=1

θjwt−j + wt. (2)

Auto-Regressive (AR) parameters φi and Moving Average (MA) parameters
θj in (2) are estimated from the time series historical part (training data), usually

via maximum likelihood; in this way, we obtain maximum likelihood estimates φ̂i
and θ̂j . White noise terms wt are independent, identically distributed random
variates which come from a normal distribution N(0, σ2

w). To estimate future
values of yt, we generally assume that wt at time t is small relative to yt. We
can obtain estimates of past values of wt at time t − i from past true values of
yt and past values of ŷt: ŵt−i = yt−i − ŷt−i; the estimate for yt is then

ŷt =

p∑
i=1

φ̂iyt−i +

q∑
j=1

θ̂jŵt−j . (3)

Extensions to the basic ARMA model include ARIMA models for dealing
with non-stationary time series with trend, and SARIMA models, which are
useful to identify seasonal patterns in temporal data; such seasonal patterns
are characterized in a SARIMA model by Seasonal Auto-Regressive (SAR) and
Seasonal Moving Average (SMA) parameters. For more information, see [13].
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2.3 Feed Forward Neural Networks

An artificial neural network can be graphically represented as a group of nodes
interconnected by arrows; such representation helps us visualize how information
is processed inside a system of artificial neurons. We now describe the structure
of a feed forward neural network (FFNN) adapted to our experiment. Figure 1
depicts a FFNN with inputs x1, x2, . . . , xd and output ŷ.

Fig. 1. Feed Forward Neural Network (FFNN)

In the structure from Fig. 1, information flows from left to right. Each arrow
inside of the neural network represents a weight w; a signal with value s at the
left of arrow w, flows through it, and exits at the right side with value w · s.
A feed forward neural network (also called a multilayer perceptron) typically
contains three layers: input layer, hidden layer, and output layer. The input layer
consists simply of the network’s inputs; i.e., x1, x2, . . . , xd (predictor values),
plus a constant value of one called intercept. In Fig. 1, our input layer consists
of the nodes (circles) aligned vertically on the left side. The column of nodes at
the immediate right of the input layer is the hidden layer, which consists of q
neurons, or hidden units, placed at the nodes, plus an intercept. Each hidden unit
sums all of its inputs, and then transforms this sum via its activation function
σ(z) = 1

1+e−z (sigmoidal logistic function). Mathematically, the functionality of

hidden neuron h (h = 1, 2, . . . , q) is described by σ
(∑d

i=0 wi,hxi

)
, where x0 = 1

is the intercept coming from the input layer; wi,h is the weight that corresponds
to the arrow connecting input node xi to hidden unit h. The output layer in Fig.
1 consists of one neuron only (since we are interested in forecasting a single time
series value), with similar functionality to that of hidden neurons; the difference
is that now the activation function has the form I(z) = z (identity function). The
functionality of the output layer (and of the whole feed forward neural network)
is described by

ŷ = w0,1 +

q∑
h=1

wh,1σ

(
d∑

i=0

wi,hxi

)
, (4)
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where w0,1 is the weight that corresponds to the arrow connecting the hidden
layer intercept to the output unit, and wh,1 is the weight that corresponds to
the arrow connecting hidden neuron h to output unit.

FFNNs are trained by using supervised machine learning algorithms, Back-
Propagation (BP) being the most representative of such algorithms for FFNN
training purposes. BP attempts to minimize a loss function which involves all
weights in the FFNN; a typical loss function employed is the mean squared error
loss function

E(W ) =
1

n

n∑
i=1

[
y(i) − ŷ(i)(W )

]2
, (5)

where y(i) is the target (observed value) and ŷ(i)(W ) is the FFNN output for
the i-th example input pattern in the training data (i = 1, 2, . . . , n); W is a
vector whose components are all the weights in the FFNN. The objective of BP
is to adjust the weights in W iteratively, using a stochastic gradient descent
technique, until the FFNN output gets sufficiently close to all target values in
the training data set. For more details, see [2].

2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) [8] is an optimization algorithm inspired by
the motion of a bird flock; any member of the flock is called a “particle”. All
particles move across a real valued D-dimensional search space, so each particle
has three attributes: position x, velocity v, and best position visited after the
first iteration p, according to a cost function E. The best of all p values is called
global best g; this global best position is communicated to all particles such
that, at the time of the next algorithm iteration, all the particles are aware of
the best position visited. PSO stated goal is to minimize function E : RD → R;
i.e., find a ∈ RD such that E(a) ≤ E(x) for all x in the search space. Figure
2 lists a pseudo-code for the basic PSO algorithm; here, ω is the inertia weight,
and ϕp, ϕg are called acceleration coefficients; these meta-parameters must be
adjusted by the practitioner.

Recently, PSO has been employed as a FFNN training algorithm; it is easy
to adapt the basic PSO algorithm in order to minimize mean squared error loss
function (5); simply identify vector W , whose components are all the weights in
a FFNN, with basic PSO’s position vector x. Numerous particular applications
involving some sort of FFNN-PSO hybrid model for time series prediction can be
found in the literature; see for example [1], [12] and [20]. In this paper, we adapt
FFNN ensemble models to quarterly time series data, training individual FFNN
elements with either BP or basic PSO; individual predictions from an ensemble
are averaged out, producing a final prediction for the whole ensemble. Individual
predictions taken together, but not combined, form an ensemble channel. See
Sect. 3 for more information.
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Algorithm 1: basic PSO algorithm

for each particle i = 1, 2, ..., N in the swarm do
initialize position: xi ← uniform random vector in RD

initialize best known position: pi ← xi

if E(pi) < E(g) update swarm’s best known position: g ← pi

initialize velocity: vi ← uniform random vector in RD

until a termination criterion is met, repeat:
for each particle i = 1, 2, ..., N in the swarm do

for each dimension d = 1, 2, ..., D do
pick random numbers rp, rg ∼ U(0, 1)
update velocity: vi,d ← ω vi,d + ϕprp(pi,d − xi,d) + ϕgrg( gd − xi,d)

update position : xi ← xi + vi

if E(xi) < E(pi) do
update best known position: pi ← xi

if E(pi) < E(g) update swarm’s best known position: g ← pi

Now g holds the best found solution

Fig. 2. Basic Particle Swarm Optimization (PSO) algorithm.

3 Experimental Methodology

The objective of this experiment is to investigate the robustness of FFNN en-
sembles applied to quarterly time series forecasting tasks, by comparing their
prediction ability with that of SARIMA models. For constructing our models,
we employed eleven time series datasets taken from the 2010 Neural Network
Grand Competition (NNGC) [16]. The time series datasets employed in this
experiment are listed in Table 1. Next we’ll describe the conditions under which
the experiment was conducted.

Table 1. Time series datasets employed in this experiment. Series with a mark ∗ are
seasonally adjusted.

Time series name from to Quarterly
values

1. Total operating expenses for US domestic airlines 1993-I 2002-IV 40
2. Personal Expenditures: transportation 1990-I 1997-III 31
3. Motor vehicle output (Autos) 1967-I 2003-IV 148
4. Motor vehicle output (Trucks) 1967-I 2003-IV 148
5. New motor vehicles (Trucks) 1967-I 2003-IV 148
6. Net exports (Autos) 1977-I 2003-IV 108
7. Net exports (Trucks) 1977-I 2003-IV 108
8. Final sales of vehicles to domestic purchasers 1967-I 2003-IV 148
9. Domestic output of new autos 1967-I 2003-IV 148
10. Real Vehicle Output-Private fixed investment ∗ 1967-I 2003-IV 148
11. Real Vehicle Output-Imports ∗ 1967-I 2003-IV 148

For the SARIMA models we employed the basic Box-Jenkins methodology,
fitting models of the form ARIMA(p, d, q)×(P,D,Q)4 to each time series dataset.
On the other hand, for FFNN ensembles, we fit a single fixed FFNN structure
to each FFNN element in any given ensemble, across all time series datasets.
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Prior to commencing model construction, we standardized each time series
dataset (i.e., we subtracted dataset mean from each observation and divided
resulting difference by dataset standard error); we did this in an initial attempt
to minimize the occurrence of convergence problems inside model training pro-
cedures. During the construction of SARIMA models, we realized that series
4, 5, 7 and 8 show growing variability (heteroscedasticity), so first we applied a
logarithmic transformation to the original series in those cases, and then we stan-
dardized the log transformed series. The forecasts produced by all constructed
models were compared against transformed target values. In this experiment
we considered two types of ensembles: FFNN-BP ensembles, and FFNN-PSO
ensembles; all individual models in a given ensemble were trained using just one
of the two training algorithms considered in this experiment: Back-Propagation,
and PSO.

Model implementation. All models in this experiment were implemented
by using the R programming language [17]. SARIMA models were implemented
with the help of the astsa package [14]; individual FFNN-BP models in an
ensemble were implemented via the nnet package [15], and FFNN-PSO models
were programmed from scratch, using a combination of R and Java code. For
FFNN-PSO ensembles, the programming of the FFNN part, was done in R, while
the PSO part was done in Java, in order to improve computing speed. R and Java

code communicate inside the R environment via the rJava package [18]. The basic
PSO algorithm, according to Kennedy and Eberhart [8] was the algorithm of
choice in our experiment. For FFNN models, we chose a 4-2-1 FFNN architecture
(i.e., 4 input variables, 2 hidden sigmoid units and 1 output linear unit). This
choice of FFNN size was made taking into account the parsimony principle
for model construction: we chose the minimal number of input nodes capable of
capturing annual seasonal patterns for quarterly time series, and a small number
of hidden units so as to allow for a moderate amount of nonlinearity. One output
unit is all we need, because we are producing 1-step ahead forecasts for univariate
time series.

Notational conventions for model building. Suppose a given time series
dataset contains N (normalized) values x1, x2, . . . , xN equally spaced in time.
For all FFNN models considered in this experiment, inputs are time series
values xt, xt−1, xt−2, xt−3, while for all models (including SARIMA models), the
corresponding output x̂t+1 is considered to be an estimate of value xt+1. Now
we’ll describe how we split the time series datasets into training and test sets.

Training set. It consists of all values in a given time series dataset, except
for the 4 most recent, which are reserved for testing purposes. For FFNN models,
it is necessary to rearrange training set values into a rectangular array like the
one shown in Table 2. Columns xt−3, xt−2, xt−1, xt represent predictor variables,
while column xt+1 contains target values.

Test set. It consists of the 4 most recent observations xN−3, xN−2, xN−1, xN
in a given time series dataset. These values are to be compared against model
predictions x̂N−3, x̂N−2, x̂N−1, x̂N , so we can measure forecast ability for any
model; see Equation (6).
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Table 2. Training data for FFNN models.

Example xt−3 xt−2 xt−1 xt xt+1

1 x1 x2 x3 x4 x5

2 x2 x3 x4 x5 x6

3 x3 x4 x5 x6 x7

...
...

...
...

...
...

N − 8 xN−8 xN−7 xN−6 xN−5 xN−4

In order to generate forecast values for any trained model, we proceed as
follows: First, we compute x̂N−3 by using values xN−7, xN−6, xN−5, xN−4 as
model inputs; then, we generate test forecast value x̂N−2 by using values xN−6,
xN−5, xN−4, x̂N−3 as model inputs; x̂N−1 is generated from inputs xN−5, xN−4,
x̂N−3, x̂N−2, and finally x̂N is generated from inputs xN−4, x̂N−3, x̂N−2, x̂N−1;
notice that each succeeding forecast employs more and more predicted values as
inputs, so forecast uncertainty grows as we advance into the distant future.

Test error. To measure forecast ability for any model considered in this
experiment, we employed a Mean Squared Error (MSE) measure, computed
according to Equation (6).

MSE =

∑N
t=N−3(xt − x̂t)2

4
. (6)

FFNN model training. As previously mentioned, a fixed FFNN archi-
tecture 4-2-1 with a linear output unit and sigmoidal hidden units was chosen.
FFNN-BP models were implemented and trained adjusting weight decay to 0.01,
and maximum number of iterations to 1000. These settings were applied to each
individual FFNN-BP element in an ensemble, across the 11 time series datasets.

FFNN-PSO models in this experiment employed 100 particles (each particle
conceptually being a FFNN), evolving through 200 iterations; particle position
components (which happen to be FFNN weights) were randomly initialized
using a uniform distribution U(−2, 2); likewise, particle velocity components
were randomly initialized, but using a uniform distribution U(−0.7, 0.7). If any
particle velocity component v exceeds 1.4 in absolute value at any iteration of
the PSO process, it is set back to 0.7, multiplied by the sign of v; this is done to
prevent particles from moving too fast in the search space, thus favoring a stable
evolution of the PSO process. As for the rest of PSO meta-parameters, the inertia
weight ω was set equal to 1.5, while acceleration coefficients ϕp and ϕg were both
set equal to 2.0 (see Fig. 2). Why these choices for our FFNN-PSO models?
Position and velocity components were randomly initialized with rather small
values, as this provides better convergence behavior. In previous experiments, we
observed that 10 or even 50 particles were not sufficient for proper convergence;
on the other hand, more than 100 particles take too much computation time
and produce no better results than 100 particles. Previous experimentation also
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shows that 200 iterations are enough for our PSO algorithm to converge; in this
experiment, FFNN-PSO training stops exactly after 200 iterations. Acceleration
coefficients were both set to 2.0 and inertia weight was set to 1.5 because we
observed that the recommended values of 0.72 for inertia weight and 1.49 for
both acceleration coefficients, suggested in the literature (see, for example, [7]),
were rather slow for proper convergence.

4 Experimental Results

MSE measures for SARIMA models. Table 3 shows MSE measures, com-
puted as indicated by Equation (6), for constructed SARIMA models, along
with their final selected orders (p, d, q) × (P,D,Q)4; these orders were selected
carefully: sample ACF and PACF plots were inspected thoroughly in order to
determine if regular and/or seasonal differentiation was required; tentative AR,
SAR, MA and SMA orders were tested by fitting several SARIMA models;
diagnostics were inspected to make sure residuals from a given model were as
uncorrelated and normal as possible; finally, to select a winner from a list of
competing SARIMA models adequately fitted to a time series dataset, Akaike
and Bayesian Information Criteria were used. Recall from Table 1 that series 10
and 11 are seasonally adjusted, which means that all seasonal influences from
these series were already removed; this is why P , Q and D orders for SAR, SMA
components and Seasonal differencing all equal zero in these series.

Table 3. MSE measures for constructed SARIMA models. std(x) means original series
was standardized; std(log(x)) means log of original series was standardized.

Series SARIMA order Transformation MSE
1 (0, 1, 0)× (0, 0, 0)4 std(x) 0.0239
2 (0, 1, 0)× (0, 0, 0)4 std(x) 0.0435
3 (1, 1, 1)× (0, 0, 0)4 std(x) 0.1578
4 (0, 1, 0)× (0, 1, 5)4 std(log(x)) 0.0006
5 (0, 1, 3)× (2, 0, 0)4 std(log(x)) 0.0033
6 (1, 1, 1)× (2, 0, 2)4 std(x) 0.0467
7 (1, 1, 0)× (0, 0, 0)4 std(log(x)) 0.0030
8 (1, 1, 0)× (0, 0, 0)4 std(log(x)) 0.0025
9 (0, 1, 1)× (0, 0, 3)4 std(x) 0.1701

10 (0, 1, 2)× (0, 0, 0)4 std(x) 0.0403
11 (0, 1, 0)× (0, 0, 0)4 std(x) 0.0317

SARIMA vs. individual FFNN-PSO models (MSE for test data).
Table 4 shows the distribution of prediction errors associated to the elements
in each ensemble of FFNN-PSO models (we constructed one ensemble of 100
elements per time series dataset), along with the prediction error associated to
the corresponding SARIMA model. From Table 4, we see that for each one of
the 11 time series datasets, there is at least one individual FFNN-PSO model
which produces a prediction error smaller than the prediction error associated
to the corresponding SARIMA model; this tells us that if we build an ensemble
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Table 4. SARIMA vs. individual FFNN-PSO (MSE for test data).

series MSE SARIMA min 1st q median mean 3rd q max se
1 0.0239 0.0169 0.3649 0.4501 0.4455 0.5468 0.7428 0.1552
2 0.0435 0.0371 0.0682 0.1014 0.1441 0.1601 0.7871 0.1376
3 0.1578 0.0042 0.0405 0.0754 0.0821 0.1093 0.2102 0.0501
4 0.0006 0.0001 0.0085 0.0298 0.0812 0.0600 2.1110 0.2321
5 0.0033 0.0012 0.0160 0.0556 0.1021 0.1428 0.5756 0.1179
6 0.0467 0.0406 0.1906 0.3242 0.3690 0.5258 0.9925 0.2287
7 0.0030 0.0028 0.0569 0.0872 0.0885 0.1145 0.2231 0.0456
8 0.0025 0.0005 0.0052 0.0184 0.0419 0.0504 0.3193 0.0612
9 0.1701 0.0206 0.0682 0.1146 0.1155 0.1510 0.2696 0.0573
10 0.0403 0.0184 0.0762 0.1655 0.2164 0.3051 0.7544 0.1742
11 0.0317 0.0096 0.0221 0.0346 0.0773 0.0720 0.7600 0.1224

of FFNN-PSO models with at least 100 elements, some of those elements will
produce better forecasts than an adequately-built SARIMA model; additionally,
all forecasts from the FFNN-PSO ensemble will form an “ensemble channel”
which hopefully will contain all time series test values without being too wide (see
Fig. 6). Thus, with a single fixed template employed to construct all FFNN-PSO
models in this experiment, we were able to produce competitive FFNN-PSO
ensembles, at the level of well-constructed SARIMA models; the single template
approach could be an economic alternative if fitting individual models for each
time series dataset turns out to be a very time consuming task; of course, better
results would be achieved by adapting a FFNN-PSO model template to each
time series dataset.

SARIMA vs. individual FFNN-BP models (MSE for test data). We
also performed an analogous comparison between prediction errors associated to
individual FFNN-BP elements in an ensemble, and to SARIMA models; the
results are shown in Table 5. We see that, for time series 1, 2, 4, 5, 6, 7 and
10, individual FFNN-BP models never produce better time series forecasts; by
contrast, for series 3, 8, 9 and 11, nearly all individual FFNN-BP models produce
better time series forecasts with respect to their SARIMA counterparts. Note
also from Table 4 and Table 5, that prediction errors for FFNN-PSO ensembles
contain more variability than their FFNN-BP counterparts; the resulting vari-
ability induced by the PSO process will allow us to estimate prediction limits
(see Fig. 3). Unfortunately, small variability of prediction errors from FFNN-BP
ensembles does not help in the construction of ensemble channels (see Fig. 4).

FFNN ensemble channels and SARIMA confidence intervals. Figure
3 shows the averages of individual estimations produced by all elements in the
11 FFNN-PSO ensembles built in this experiment (one average per ensemble),
along with the corresponding original time series, and the limits for the ensemble
channels; the thick vertical lines shown here separate training data from test
data. Figure 4 is the FFNN-BP counterpart of Fig. 3, and Fig. 5 is similar to
Fig. 3, but shows instead the SARIMA forecasts along with their corresponding
prediction limits, built upon the assumption of residual normality. From Fig. 3
and Fig. 5, we see that most test data for the 11 time series datasets are contained
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Table 5. SARIMA vs. individual FFNN-BP (MSE for test data).

series MSE SARIMA min 1st q median mean 3rd q max se
1 0.0239 0.3192 0.5262 0.5306 0.5202 0.5319 0.5956 0.0370
2 0.0435 0.0495 0.0495 0.0521 0.0526 0.0522 0.0859 0.0050
3 0.1578 0.0884 0.1012 0.1012 0.0991 0.1022 0.1034 0.0051
4 0.0006 0.0107 0.0109 0.0110 0.0132 0.0139 0.0203 0.0035
5 0.0033 0.0085 0.0085 0.0092 0.0140 0.0126 0.0347 0.0089
6 0.0467 0.0609 0.0647 0.0647 0.0688 0.0655 0.2049 0.0200
7 0.0030 0.0547 0.0599 0.0608 0.0613 0.0643 0.0644 0.0026
8 0.0025 0.0013 0.0013 0.0014 0.0025 0.0019 0.0070 0.0020
9 0.1701 0.0776 0.0787 0.0798 0.0835 0.0838 0.0981 0.0067
10 0.0403 0.0873 0.0938 0.0970 0.0971 0.0978 0.1176 0.0050
11 0.0317 0.0110 0.0112 0.0112 0.0113 0.0113 0.0117 0.0002
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Fig. 3. FFNN-PSO ensemble predictions for all time series datasets.
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Fig. 4. FFNN-BP ensemble predictions for all time series datasets.
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Fig. 5. SARIMA predictions for all time series datasets.

inside the prediction limits defined by the models. To be more precise, SARIMA
models enclose 91% of all test data within their prediction limits (indeed getting
close to the theoretical expected confidence value of 95%), while FFNN-PSO en-
sembles enclose 89% of all test data within their ensemble channels; by contrast,
FFNN-BP ensembles enclose only 16% of all test data within their prediction
limits. Thus, SARIMA models and FFNN-PSO ensembles are able to produce
accurate interval estimations, in addition to point forecasts; FFNN-BP ensembles
practically give us point forecasts only (except for time series 1 and 6; see Fig.
4). From Fig. 3, we see that FFNN-PSO forecast limits for time series 4, 5 and
8 are too wide; note also that in these cases, ensemble channels enclose training
data comfortably, even with a spare margin (by the way, in Fig. 5 we see that
SARIMA forecast limits for time series 1, 3, 7 and 9 are also too wide).
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Fig. 6. FFNN-PSO ensemble channel for time series 11.
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5 Conclusions

In this experiment, we obtained adequate SARIMA models; their construction
required statistical knowledge and good judgment in order to select the best
model template for each time series; forecasts produced by these SARIMA
models served as a baseline for our model comparison experiment. On the other
hand, FFNN ensemble models for all quarterly time series datasets were readily
constructed from a single FFNN template, without making any previous assump-
tions about the data generating mechanism; the point in comparing FFNN en-
semble models built from a single template against individual SARIMA models is
to test robustness of FFNN ensembles applied to quarterly time series prediction
tasks. All individual FFNN elements in an ensemble model were trained using
just one optimization algorithm (Back-Propagation or Particle Swarm Optimiza-
tion) with pre-established meta-parameters, and a fixed training set. Estimations
from individual FFNN elements in an ensemble were averaged to form a final
ensemble prediction; all individual predictions from the ensemble elements, taken
together, but not combined, form an ensemble channel, which suggests multiple
possibilities for future time series movements. All FFNN-PSO ensembles gener-
ated competitive forecasts, at the level of well-constructed SARIMA models; the
single template approach for adapting FFNN-PSO ensembles to multiple time
series datasets of quarterly frequency can be an economic and sensible alternative
if fitting individual models for each time series dataset turns out to be a very
time consuming task. FFNN-PSO ensembles were able to produce accurate
interval estimations, in addition to good point forecasts; FFNN-BP ensembles
generally produced point forecasts only. In some cases, individual FFNN-BP
models produced forecasts more accurate than those produced by SARIMA
models or by FFNN-PSO ensembles. Prediction intervals from SARIMA and
FFNN-PSO ensemble models covered most test data; in a few cases, prediction
intervals for both models were too wide; thus, PSO meta-parameter fine-tuning is
necessary in a case-by-case basis. Future work should also include testing FFNNs
of varying complexity, to see if forecasting accuracy can be further improved.
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